0闪电比特币(LBTC)白皮书Lightning Bitcoin(LBTC) Whitepaper1 概要⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅022 分叉方法论⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅032.1 点对点的电子现金系统⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅032.2 LBTC的分叉方法论⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅042.3 比特币路线对设计初衷的背离⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅062.4 LBTC分叉详情⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅083 LBTC的技术架构⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅093.1 LBTC是一个互联网价值传输协议⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅093.2 UTXO模型:最安全的记账方式⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅103.3 DPoS架构:最高效的共识机制⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅123.4 UTXO+DPoS:惊人的奇妙组合⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅144 LBTC链上治理⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅164.1 链上治理的内涵和外延⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅164.1.1区块链:自我进化的类生命体⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅164.1.2 治理是区块链自我进化的制度基础⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅174.1.3 管理、统治与治理⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅184.1.4 LBTC定义的治理⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅204.1.5区块链治理的发展历程:从链下到链上⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅204.1.6 区块链治理的待解决问题⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅224.2 LBTC的链上治理体系⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅234.2.1 LBTC治理思想:记账权与议事权的『两权分离』⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅234.2.2 LBTC治理思想:代议民主与直接民主的『混合治理』⋅⋅⋅⋅⋅⋅⋅⋅⋅244.2.3 系统角色定义⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅264.2.4 节点要求以及选举规则⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅284.2.5 LBTC理事会(LBTC Council)细则⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅294.2.6 LBTC DAO基金⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅334.2.7 LBTC协议的自我进化⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅33
15 LBTC去中心化交易平台⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅365.1 DEX与代币化的未来⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅365.1.1 DEX是交易所的未来⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅365.1.2 代币化运动的必然性⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅375.1.3 非标准非传统资产⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅385.2 LBTC上建DEX与Oracle生态⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅395.2.1 LBTC对DEX的天然适配性⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅395.2.2 LBTC上建DEX服务概览⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅405.3 技术实现⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅435.3.1 系统架构总览⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅435.3.2 Token DB⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅445.3.3 Token模块⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅455.3.4 DEX模块概览⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅465.3.5 DEX技术架构⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅475.3.6 DEX性能问题⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅486 展望⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅517 参考文献⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅53
21 概要LBTC(Lightning Bitcoin,闪电比特币)是去中心化的全球价值互联网传输协议,具体应用包括点对点支付以及去中心化数字资产交易等。任何接受LBTC协议的用户都可以几乎免费的使用LBTC来保证交易的实时性与安全性。LBTC是为了解决比特币存在的矿工中心化、网络拥堵、交易处理效率低等问题,由Lightning团队硬分叉比特币而形成的基于DPOS(委托权益证明)共识机制的区块链;LBTC是比特币实验的重要组成部分。得益于DPOS共识机制出块时间短、高效、强健的特性,LBTC可实现极为迅速的交易确认。Fast as Lightning,LBTC正因其快如闪电而被命名。LBTC是世界上最高效、最具有应用潜力的比特币协议分叉版本。借助于强大的网络吞吐能力,LBTC可为快速点对点支付、去中心化交易平台、智能合约、链上Oracle、链上治理等开发及使用需求提供充分性能支撑。
32 分叉方法论2.1 点对点的电子现金系统在2008年末中本聪提出的白皮书《比特币--一种点对点的电子现金系统》中,明确指出比特币是一个不依赖中心机构的、点对点的电子现金系统。所谓电子现金,以当下的商业概念理解,它是一种支付方式(支付系统),但有别于常见的第三方支付系统,比特币实现了不依赖中心与中介的用户支付行为。同时,比特币也是一种通货商品;无论我们是否定义比特币为货币,其通货商品的属性是必然成立的,该属性亦赋予比特币具体的内含价值。在目前版本的比特币方案之前,密码朋克运动的先驱者曾经有数次尝试,但都没有成功。中本聪的方案的精髓在于,他首先保证了去中心化的P2P网络是可以在技术上实现的,而后建立了强健的、长期可持续发展的经济系统。无数先例表明,倘若没有去中心化这一技术基础,任何电子现金系统的尝试最终都难以避免中心化机构的打击。基于不对称加密体系和哈希函数,比特币构建了坚固的反破解系统,使得对比特币区块链数据的逆向结构在计算上不可能。比特币使用的P2P网络概念很早就已被应用,但是中本聪创造性地利用不对称加密函数和哈希函数的trap-door特性,建立了依赖私钥-公钥-地址的密码学构造、区块之间的哈希关系连接、可验证的电子签名交易脚本等一系列精巧机制,使得破坏比特币数据库所消耗的资源远远大于构建数据库所消耗的资源。设计者的智慧更体现在他所引入的矿工奖励机制,即依赖矿工提供算力构筑比特币信任的城墙,进而通过不可逆地凝结算力这一方式,从无到有创造了一个全球性电子现金系统所需要的关键元素--信任。某种意义上来说,构建牢固且不断累积增长的信任,才是比特币协议设计思想核心的核心。
42.2 LBTC的分叉方法论LBTC通过发起对原始比特币协议的硬分叉,成为了比特币的一个实现版本。因此,LBTC可以被认为是对比特币协议的一种诠释方式,亦应当被认为是点对点电子现金系统的一个落地方案。比特币分叉,广义上指比特币区块链在拓扑结构上的分裂,在较短的一段时间内形成两条链共存的情况;但在比特币共识机制的作用选择下,区块链最终会恢复到唯一链的共识状态。狭义的分叉一般指代人为导致协议变动带来的硬分叉,因共识的分裂造成比特币网络在多套不同的共识群体环境下运行,形成若干独立的区块链协议。比特币至今已有多个仍在成功运行的分叉协议版本,不同的协议版本针对比特币存在的缺陷或局限提出了各有侧重的解决方案。在众多分叉版本中,LBTC在全球范围内首次提出基于UTXO的DPOS共识机制,并在解决了一系列技术难题后取得了长期稳定的主网运行。LBTC认为,一个真正的点对点支付系统,需要满足以下条件:1)必要的信息吞吐能力和交易处理速度,足以应对高频小额支付交易;2)支持该支付系统的运行成本足够低廉,大大低于该系统功效所产生的社会总效用;3)设计出使得系统得以长期稳定运行的经济系统,引入适当的角色以支持具备拓展潜力的系统功能、并平衡其中的利益关系;4)有可行的方法进行协议的自我更新,使得系统能够不断进化、引入新的特性以适应环境。
5LBTC的分叉方法论:1)LBTC认可原始比特币协议的价值与地位,复用和借鉴了原始比特币协议所产生的数据以及部分重要设计思想;2)LBTC希望实现比特币点对点现金系统的设计初衷,通过改造比特币协议,建立一个技术上可行的、全球共享的点对点现金系统;3)在点对点现金系统的基础上,要求协议能够承载一定的经济活动功能,简便、安全、人人可用;4)LBTC对比特币协议进行的上述改进和创新,既要在根本上解决构建点对点现金系统所必须面对的技术及经济问题,又要尽可能地引入已经被验证成熟的技术和模式,确保系统的稳定性、用户可接受性以及长期可持续性。针对保证足够的信息吞吐能力以及控制运行成本的矛盾,LBTC引入了高效的DPOS共识机制,并创新性地解决了比特币底层UTXO模型与DPOS账户系统不兼容的难题,成为唯一使用DPOS共识机制、也是唯一成功解决UTXO+DPOS技术问题的比特币分叉协议。LBTC所使用的DPOS共识机制,保证3秒稳定出块、具备不可逆转块设计,不仅使得点对点支付得到技术性能上的支撑,也为内置dApp、链上治理、智能合约等复杂链上行为和功能提供了充分可行性。其次,针对协议的可维护性、可持续性以及长期创造性解决问题的能力要求,LBTC构建了有自身特色的链上治理哲学,引入了兼顾民主与效率的SGS链上治理体系。该体系极大程度地鼓励了社区对链上事务的参与、促进了参与群体对环境变化的响应,因而协议能够快速更新迭代,成为能够自我运营、自我更新进化的比特币协议。而针对协议功能对经济模型中复杂系统角色的需求,LBTC的链上治理体系和DEX体系引入了节点、分享治理委员会、交易网关、承兑网关等经济行为角色,权力结构上实现了记
6账权与治理权的两权分离,在链上治理的民主实践中迈出创造性的一步。2.3 比特币路线对设计初衷的背离虽然比特币在设计上保证了去中心化、点对点的电子现金系统的技术可行性,但这并不意味着比特币的发展路径完全符合白皮书的设计初衷。比特币暴露了作为点对点现金系统的诸多弊病,并且在市场影响下选择了偏向于储值资产的自我定位。前文已经提及过,一个真正的点对点支付系统,需要:1)必要的信息吞吐能力和交易处理速度,足以应对高频小额支付交易;2)支持该支付系统的运行成本足够低廉,大大低于该系统功效所产生的社会总效用;3)设计出使得系统得以长期稳定运行的经济系统,引入适当的角色以支持具备拓展潜力的系统功能、并平衡其中的利益关系;4)有可行的方法进行协议的自我更新,使得系统能够不断进化、引入新的特性以适应环境。而比特币面临的第一个问题就是信息吞吐量低下所导致的交易处理量和交易确认时间问题。这一问题的本质是由比特币POW机制、区块大小设计(2M)和出块时间(约10分钟)带来的。区块大小、出块时间都是在POW框架下保证了网络的去中心化程度这一根本目的而决定的,不能通过简单地参数调节来解决问题。闪电网络提供了链下拓展的解决方案,但仍面临一些争议,并不是一个本质的方案(导致中心化、中介化)。此外,任何基于POW机制的其他比特币分叉协议,亦无法在根本上解决这一问题,反而分化了POW算力、进而分化了信用构建所需的宝贵资源。
7比特币面临的第二个问题是POW机制对资源的巨大消耗。POW的长期运行固然可以积累价值不菲的信用护城河,但无法以足够低廉的成本支撑一个点对点电子现金系统。这使得比特币反而在市场的影响下调整了自身的定位,主动或被动地选择了线上储值资产的发展路径,试图将自己打造为电子版、线上版的黄金。对这一路线我们不做过多评价;但可以肯定的是,比特币协议已经背离了当初建立全球点对点现金系统的初衷。第三个问题是,比特币虽然构建了可以持续运营的矿工体系,但是对于点对点支付系统这样偏向于实际应用、功能设计更为复杂的系统来说,矿工体系显得过于简单低级。而且目前主流论调普遍认为,可以从数学和经济原理上证明,在POW机制下矿工与用户、开发者的利益是不可协调的。比特币体系无法给出一种很好的可以让复杂的链上系统经济角色(例如网关)产生收入并平衡各方利益的解决方案,也无法做到记账权与治理权的两权分离,极大地阻碍了比特币适应复杂经济活动的能力。此外,比特币的治理机制依赖的是最为原始的链下治理,治理内耗极为严重、无法实现快速响应,这应当是众所周知且一度影响比特币生死存亡的大难题。又因比特币对路线的选择,导致比特币开发组对协议的变动和升级极端保守化,这一切使得比特币并不适合作为点对点现金系统这样一个偏向于支付应用的系统。总而言之,比特币目前所具备的特性(POW、出块时间长、块容量小、矿工一元经济体系、协议变更保守化)更加适合当前作为储值资产、电子黄金的定位,但同时也不可避免地背离了点对点现金系统的初衷。
82.4 LBTC分叉详情·分叉时间:北京时间2017年12月18日;·分叉块高:499999;·共识机制:基于UTXO的DPOS;·出块间隔:固定3秒,可动态调整;·设置不可逆转块;·块体积:2M,可动态调整;·不支持隔离验证;·添加重放保护;·支持CPU挖矿;·有拓展智能合约的能力;
93 LBTC的技术架构3.1 LBTC是一个互联网价值传输协议LBTC是一个互联网价值传输协议(Internet of Value Protocol)。所谓价值传输,指在特定协议框架下可以实现的价值表达、传递和信用构建,以及基于此的所有经济金融活动,具体可能包括转账汇款、数字资产互换,法币-数字资产交换、信用背书的数字资产发行与交易、去中心化交易所、交易与承兑网关等一系列具备现实功能与社会效用的应用。LBTC协议的设计核心是,通过选用适当的技术架构去保证LBTC有足够的能力担当全球互联网价值传输的载体系统。LBTC协议是实现价值传输的基本框架,即一切链上经济行为的母体。因此,我们对LBTC适用的技术架构以及各项内在细节提出了很高的要求,创造
10性地建立了基于UTXO的DPoS共识机制,并设计了不可逆转块、时间戳共识、Cache中间件等平衡了这一组合的性能与可靠性,实现了一个比原始比特币更为贴近点对点现金系统设计初衷的协议版本。3.2 UTXO模型:最安全的记账方式在数据层,LBTC沿用了比特币采用的UTXO模型,作为区块链账本记录的基础架构。UTXO 是Unspent Transaction Output (未被花费的交易输出)的缩写,是中本聪最早在比特币交易数据结构设计中采用的技术方案,同时也是比特币协议为世界带来的一项极具创新性的数据结构概念。UTXO放在比特币协议的数据库中是这样的形式:在链上确认若干笔转账交易目的地指向用户A,并且A尚未花费掉这些交易所指明的资产,所有协议参与者就认可A就拥有这些资产。相较于UTXO模型,一般人更容易理解账户模型(Account Model)。账户模型是指在数据库中保存账户的ID、所有者标识以及该账户中的资产余额;当发生转账交易时,这些账户的余额会依据交易进行调整变动,形成新的账户-余额的Mapping关系(即对应关系)。而在UTXO模型中,一个账户的余额并不是作为一个数字被储存起来的,而是用占有的
11UTXO 的总和计算出来的。也就是说,UTXO并没有所谓账户-余额的Mapping关系,它仅仅是一个对所有历史交易的忠实记录,简约但十分强健。UTXO模型具有以下优点:UTXO的可靠性在一个区块结构体中,previousblockhash 和merkleroot是两个最重要的字段,都起到了防止交易信息被篡改的可能性。UTXO 模型的核心思想就是保证已经写入的数据不可变,链式的UTXO 基于这一核心思想,通过哈希指针连接不同交易的输入和输出,保证所有交易的合法性,实现UTXO的可溯源性。UTXO的一次性UTXO 模型中的每一笔交易都是由多个交易输入组成的,这些输入其实就是UTXO + 签名。每一个交易输出(Transaction Output)只有两种状态,已花费和未花费。如此确保了每个UTXO仅能被花费一次,抗双花攻击能力极高。UTXO的隐匿性对比起账户模型,UTXO更加私密。前文已知,每个UTXO都是“一次性”的。用户要是每笔交易都换一个地址,那么就很难找到其中两个地址的相关性,保证了交易的隐匿性。如果还有需要进一步提高这种隐匿性,亦可以考虑使用环形交易签名对、交易要素混用等技术手段。UTXO的可并行性UTXO模型被公认具有潜在的可扩展性,因为UTXO允许交易的并行化处理。当一个交易发送者发送两笔独立的交易时,花费独立的UTXO也可使交易用任意次序处理。这样可以使一个人的资金分离,在保证隐私的同时具有并行处理交易的能力。
12比特币的UTXO模型经过了多年较为稳定的运行和测试,性能和安全性都有较大的优势。LBTC作为比特币的分叉币,采用UTXO模型,对于LBTC来说是对其底层技术的一种继承。LBTC采用比特币核心代码为基础进行开发,也是较为谨慎的选择。UTXO的安全性和并行交易特点也将给LBTC带来更高效率的可能。3.3 DPoS架构:最高效的共识机制在共识协议上,LBTC采用了委托权益证明(DPOS)的机制。DPoS是基于POW及POS的基础上,出现的一种新型的保障数字货币网络安全的共识算法。它既能解决POW在挖矿过程中产生的大量能源过耗的问题,也能避免POS权益分配下可能产生的“信任天平”偏颇的问题。那么,DPoS就能顺理成章成为在共识机制3.0中的代表性共识机制。简单阐述DPoS共识机制,其原理是让每一个持币者进行投票,选出一定数量的持币者代表,或理解为一定数量的代表节点,并由这些代表节点来完成交易验证和区块生产的工作。持币者可以随时通过投票更换这些代表,以维系链上系统的“长久纯洁性”,保证该协议有充分的去中心化程度。DPOS是目前所有共识协议中最快,最有效,最分散,最灵活的共识模式。DPOS利用利益相关方批准投票的权力以公平和民主的方式解决共识问题。所有网络参数,从简单的交易手续费标准、出块间隔、区块参数到更为复杂的链上治理规则,都可以通过选定的代表进行调整。
13DPoS共识机制具有以下优点:DPos的高效能:更快的确认速度:以LBTC为例,每个区块的时间固定为3秒,一笔交易(在得到6-10个确认后)大约消耗1分钟,完整的区块生产周期仅需5分钟;每1-2个周期即可以生成作为确认点的不可逆块。而在PoW机制下,以比特币为例,产出一个区块需要约10分钟,而确认一笔交易(得到6个确认)至少需要1小时。DPoS的低功耗:DPoS机制将节点数量进一步减少的同时,将节点间的相互关系从竞争改为合作,避免了不必要的算力竞争和互相攻击等无谓的损耗,在保证网络安全的前提下,整个网络的能耗进一步降低,网络运行成本最低。DPoS的高效治理:只要利益相关方批准,开发人员可以实施他们认为合适的任何更改。这项政策不仅可以保护开发者,同时它还可以保护利益相关者,并确保没有任何人单方面控制区块链网络或让区块链网络失控。硬分叉如同替换了51%的见证者,因此利益相关者参与的越多,其对应的选举证人越多,那么整个系统的安全性就越高。
14DPoS的鲁棒性:在整个过程中,任何人都可以通过观察见证人的参与率来监测网络健康状况。如果在某个时候见证人的参与程度都低于一定水平,那么整个区块链交易网络用户可以被允许用更多时间进行交易确认,而且还会提醒用户需要对他们的网络状况保持高度警惕,可以在出现问题后的1分钟内提醒用户区块链网络上可能存在潜在的问题。DPoS机制最早由BM应用在BTS项目中。BM的其他明星项目STEEM、EOS同样沿用了这一共识机制。DPoS自诞生以来一直都是高性能、高效率、高灵活性的代名词,众多项目的长期实践也证明了DPoS机制的这些优良特性。3.4 UTXO+DPoS:惊人的奇妙组合很多人可能会有一个错误的认知,认为DPoS只适合于账户模型,不能用于UTXO模型。但是实际上UTXO模型是存放记录的一种方式,用于交易存储、组织及验证;DPoS是一种共识算法,用于保证在分布式网络中参与者也可以对交易数据取得一致认识。UTXO和DPoS没有互斥性也没有相关性。实际上UTXO和DPoS联合会有许多额外的优势。更高的性能基础:因为UTXO的分离操作,具有潜在的可并行性。配合DPoS的性能支持,使得LBTC具有极为优秀的性能基础。实际运行结果来看,LBTC可以满足2800TPS运行要求。更高的安全性:在DPoS的架构中,节点按照给定的顺序出块,且时间间隔很短。如果使用账户模型,数据库会膨胀的很快,而且极短时间的数据库同步面临网络异常的时候会有许多问题。而采用UTXO模型,不仅可以保持数据库的大小,也可以根据特定算法生成锻造周期表,保持全网节点根据相同数据计算出的锻造周期表是一致的,此时全网节点达成共识。当锻造节点出现宕机、网络分区等情况,全网会根据“事务提交”的原则,以最长链为主链自行切换覆盖,保证一致性。
15时间戳共识:UTXO和DPoS结合的一大难点在于时间戳,DPoS共识基于时间,会严格检查区块时间。全节点系统时间必须设置为和标准时间一样,否则共识一致性会出现问题。而UTXO本身也记录了时间戳的功能,但时间戳并不基于标准时间。在LBTC里将时间戳统一成标准时间协议,以保证区块的正常运行。当存在作恶节点或者时间不同步的区块时,出块被作为异常块处理,出块节点被作为异常节点处理。数据快照和投票:在比特币采用的UTXO模型中,并不支持查询地址余额的功能。在比特币中,可以通过全局遍历UTXO数据,实时计算地址余额。实时计算的工作量相当巨大,计算时间以小时为单位,现实中不具备可行性。但是比特币不采用DPoS共识,并不需要节点注册、投票等功能。而在LBTC系统中,为了DPoS算法的需要,LBTC中新增地址余额计算、节点注册、节点投票新功能。考虑到共识算法的高性能要求、注册节点数目的有限性,把地址余额、节点注册及投票信息保存在内存中,程序退出时,把数据回写磁盘。通过数据库和地址余额、投票信息来链接UTXO记账信息和DPoS共识机制: